NUTRIENTS AND MALE FERTILITY
Our body needs a consistent supply of nutrients to stay healthy. Our physiological processes require different vitamins, minerals, amino acids, and trace elements to function at optimal capacity. Sperm production in men is very sensitive to low levels of nutrients and oxidative stress.
Clinically proven effects of male fertility nutrients
A multitude of independent, peer-reviewed scientific research studies has shown that the effect of micro nutrients on male fertility is significant. Conversely, the absence or a shortage in certain nutrients can lead to male “subfertility”. A deficiency in an individual nutrient will rarely cause total infertility, but it can unnecessarily limit fertility and delay subsequent conception.
Important nutrients for supporting male fertility
Arginine
A non-essential amino acid, arginine has both indirect and direct benefits for male fertility.
As the precursor to nitric oxide, arginine supports vascular dilation and healthy blood flow. This is indirectly important for fertility, because it helps to sustain erections and thus statistically increases conception rates.
Studies have indeed confirmed that arginine supplementation can increase fertility indirectly by improving sexual function in males with erectile dysfunction[1]Chen J, Wollman Y, Chernichovsky T, Iaina A, Sofer M, Matzkin H. Effect of oral administration of high-dose nitric oxide donor L-arginine in men with organic erectile dysfunction: results of a … Continue reading.
Arginine also directly influences key sperm parameters. Several clinical studies have found that between 4-8 g of arginine daily can improve sperm motility, count and concentration[2]Schachter A, Goldman JA, Zukerman Z. Treatment of oligospermia with the amino acid arginine. Journal of Urology. 1973. 110(3): 311-3 as well as ejaculate volume[3]Imhof M, Lackner J, Lipovac M, Chedraui P, Riedl C. Improvement of sperm quality after micronutrient supplementation. e-SPEN Journal. 2012. 7(1): e50-e53.
With no known side effects, this amino acid can safely support healthy male fertility.
Continue readingGlutathione
Glutathione is a powerful antioxidant, which protects spermatozoa from free radical damage. Clinical studies have established a link between abnormal sperm parameters and low levels of glutathione within seminal plasma.
Glutathione appears to be particularly important for protecting semen volume, sperm count[4]Naher ZU, Biswas SK, Mollah FH, Ali M, Arslan MI. Role of Glutathione in Male Infertility. Bangladesh Journal of Medical Biochemistry. 2013. 4(2): 20-25, sperm motility[5]Lenzi A, Culasso F, Gandini L, Lombardo F, Dondero F. Placebo-controlled, double-blind, cross-over trial of glutathione therapy in male infertility. Human Reproduction. 1993. 8(10): 1657-62 and morphology[6]Eskiocak S, Gozen AS, Yapar SB, Tavas F, Kilic AS, Eskiocak M. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Human Reproduction. … Continue reading.
Glutathione can be produced within the body, although it does rely on the availability of other amino acids, especially L-Cysteine. During periods of stress or illness, the body’s demands for glutathione and this Cysteine may be elevated.
If Cysteine is then undersupplied, this can result in low levels of glutathione and subsequently negatively affect fertility. It is therefore important to ensure an ample supply via the diet.
Continue readingCarnitine
The amino acid Carnitine is important for spermatozoa to sustain energy production and motility[7]De Rosa M, Boggia B, Amalfi B, Zarrilli S, Vita A, Colao A, Lombardi G. Correlation between seminal carnitine and functional spermatozoal characteristics in men with semen dysfunction of various … Continue reading. Synthesised from the amino acids lysine and methionine, carnitine helps to fuel mitochondria and remove waste products, which result from energy production.
Research has found a link between low levels of carnitine and male infertility[8]Matalliotakis I, Koumantaki Y, Evageliou A, Matalliotakis G, Goumenou A, Koumantakis E. L-carnitine levels in the seminal plasma of fertile and infertile men: correlation with sperm quality. … Continue reading. Other studies suggest that carnitine supplementation may help to improve overall sperm quality[9]Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and … Continue reading.
In summary, supplementation with this amino acid has been shown to increase sperm count and concentration, protect DNA integrity and morphology, plus improve motility[10]Banihani S, Sharma R, Bayachou M, Sabanegh E, Agarwal A. Human sperm DNA oxidation, motility and viability in the presence of L-carnitine during in vitro incubation and centrifugation. Andrologia. … Continue reading.
Continue readingVitamin A
Studies have found that vitamin A is essential for spermatogenesis. This vitamin helps to trigger the nuclear receptor pathways that signal the testes to produce sperm[11]Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. Journal of Biological Chemistry. … Continue reading.
Although more studies are necessary to determine appropriate supplementation doses, there is preliminary evidence to suggest that this vitamin may assist in treating male infertility and help improve probability of a successful artificial fertilisation such as IVF or IUI[12]Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature. … Continue reading.
Continue readingFolic acid (vitamin B9)
Widely recognised as an important compound for female reproductive health, folic acid has also been shown to improve male fertility. It is needed to support the spermatogenesis of sperm cells, which will lead to increase sperm count and density[13]Wallock LM, Tamura T, Mayr CA, Johnston KE, Ames BN, Jacob RA. Low seminal plasma folate concentrations are associated with low sperm density and count in male smokers and nonsmokers. Fertility and … Continue reading.
It also helps to safeguard developing spermatozoa from chromosomal defects[14]Young SS, Eskenazi B, Marchetti FM, Block G, Wyrobek AJ. The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Human Reproduction. 2008. 23(5): … Continue reading, which can contribute to poor fertility.
Low levels of Folic acid are related to 30% higher rate of miscarriage. Around 80% of men show low serum levels of Folic acid.
Continue readingVitamin B12
Healthy sperm requires sufficient supply of vitamin B12. This nutrient is important for DNA replication and development. It helps to support sperm production and healthy sperm count.
www.amitamin.com/en/fertilsan-m New life deserves the best possible start!
Vitamin C
Ascorbic acid (vitamin C) is typically found in high concentrations within seminal plasma. Studies have shown that this vitamin is responsible for up to 65% of free radical neutralisation within semen. This helps to safeguard developing sperm and maintain fertility.
Low levels of ascorbic acid in seminal plasma have been associated with a reduction in sperm count and motility, as well as an increase in morphological anomalies[15]Colagar AH, Marzony ET. Ascorbic Acid in Human Seminal Plasma: Determination and Its Relationship to Sperm Quality. Journal of Clinical Biochemistry and Nutrition. 2009. 45(2): 144-149. An estimated one third of the population does not eat healthy enough to cover the minimum Vitamin C intake of 80mg per day.
Continue readingVitamin D
Human sperm has receptors specifically for binding to vitamin D[16]Lerchbaum E, Obermayer-Pietsch B. Vitamin D and fertility: a systematic review. European Journal of Endocrinology. 2012. 166(5): 765-778.
Although further research is necessary, initial studies suggest that genetically healthy sperm require vitamin D[17]Aquila S, Guido C, Perrotta I, Tripepi S, Nastro A, Andò S. Human sperm anatomy: ultrastructural localization of 1alpha,25-dihydroxyvitamin D receptor and its possible role in the human male gamete. … Continue reading, because it appears to play an essential role in the regulation of DNA fragmentation and stabilisation of chromosomal structure.
Low serum levels of Vitamin D are widespread. 70%-90% of Europeans show suboptimal Vitamin D levels. The problem is more serious in Middle and Northern Europe and in winter.
Continue readingVitamin E
Vitamin E is particularly important in the reduction of oxidative stress and therefore sperm and DNA protection[18]Suleiman SA, Ali ME, Zaki ZM, El-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. Journal of Andrology. 1996. 17(5): 530-537. It has also been shown to directly improve sperm motility[19]Jones R, Mann T. Lipid Peroxidation in Spermatozoa. Proceedings of the Royal Society of London. Series B, Biological Sciences. 1973. 184(1074): 103-107. Men suffering from low fertility levels can therefore increase the chances of conception through vitamin E supplementation. About half of the population does not meet the minimum recommended daily intake of 12 mg Vitamin E.
Continue readingCoenzyme Q10
A vitaminoid, coenzyme Q10 acts like a vitamin and helps to minimise free radical damage. Studies have shown that supplementation with CoQ10 can improve sperm morphology, density, and motility[20]Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. Journal of Urology. 2009. 182(1): 237-248.
This micro nutrient is particularly important for the support of sperm forward motion[21]Mancini A, Balercia G. Coenzyme Q(10) in male infertility: physiopathology and therapy. Biofactors. 2011. 37(5): 374-380 and protection from free radicals[22]Talevi R, Barbato V, Fiorentino I, Braun S, Longobardi S, Gualtieri R. Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and … Continue reading.
Continue readingOmega 3
Studies show that blood plasma levels of omega-3 fatty acid can influence fertility. Infertile men have lower concentrations of these fatty acids within their spermatozoa compared with fertile men[23]Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile … Continue reading. Further research suggests that omega-3 fatty acid supplementation may help with idiopathic (unexplained) male factor infertility[24]Safarinejad MR, Safarinejad S. The roles of omega-3 and omega-6 fatty acids in idiopathic male infertility. Asian Journal of Andrology. 2012. 14(4): 514-515.
Continue readingPine bark extract
The compounds in pine bark extract have been shown in clinical trials to improve sperm morphology, motility and count[25]Roseff SJ. Improvement in sperm quality and function with French maritime pine tree bark extract. Journal of Reproductive Medicine. 2002. 47(10): 821-824.
In addition, pine bark extract appears to amplify the beneficial effects of Arginine on male fertility. Studies have shown that the extract from the French maritime pine in combination with arginine successfully helps treat idiopathic (unexplained) male infertility[26]Nikolova V, Stanislavov R, Vatev I, Nalbanski B, Pŭnevska M. Sperm parameters in male idiopathic infertility after treatment with prelox. Akush Ginekol (Sofiia). 2007. 46(5): 7-12.
There is also clinical evidence to suggest that pine bark extract indirectly helps fertility by enhancing the male’s physical stamina and erectile function[27]Stanislavov R, Nikolova V. Treatment of erectile dysfunction with pycnogenol and L-arginine. Journal of Sex and Marital Therapy. 2003. 29(3): 207-213.
Continue reading
Selenium
This trace element supports the structural integrity of spermatozoa. It helps to reduce oxidative stress and is a co-determinant in supporting healthy sperm motility[28]Foresta C, Flohé L, Garolla A, Roveri A, Ursini F, Maiorino M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biology of Reproduction. 2002. 67(3): … Continue reading. Crop in Europe is especially low in Selenium.
Continue readingZinc
One of the most important trace elements for male fertility is zinc[29]Abbasi AA, Prasad AS, Rabbani P, DuMouchelle E. Experimental zinc deficiency in man. Effect on testicular function. Journal of Laboratory and Clinical Medicine. 1980. 96(3): 544-550. It is required as a building block in the production of the sperm membrane and tail[30]Caldamone AA, Freytag MK, Cockett AT. Seminal zinc and male infertility. Urology. 1979. 13(3): 280-281.
Studies reveal a correlation between infertility and reduced seminal plasma zinc concentrations[31]Chia SE, Ong CN, Chua LH, Ho LM, Tay SK. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. Journal of Andrology. 2000. … Continue reading. Without sufficient available zinc, sperm are unable to mature at the normal rate, reducing sperm count[32]Tikkiwal M, Ajmera RL, Mathur NK. Effect of zinc administration on seminal zinc and fertility of oligospermic males. Indian Journal of Physiology and Pharmacology. 1987. 31(1): 30-34 potentially resulting in male subfertility.
Continue readingWhen are micro-nutrients an option?
A very healthy lifestyle is the standard recommendation for both partners of a couple that wants to conceive. Supporting male fertility should not be limited to situations when it comes to a clinical therapy.
One of the easiest and most effective ways to ensure that the body has sufficient access to nutrients to support fertility is with food supplements.
There is a range of natural supplements that have been formulated with nutrients important for male fertility.
Improve your chances efficiently and effectively
Men wanting to start a family are strongly encouraged to consider a dietary supplement. This will ensure that any fertility issues due to nutrient deficiencies are addressed. It is an effective, affordable, proven and convenient way to support male fertility – especially when considering the high costs and uncertain probabilities of fertility treatment such as IVF and ICSI.
Together with positive lifestyle adjustments, supplements can significantly help to improve conception rates.
Single or multi-nutrients?
Every chain is only as strong as its weakest link. Whether a man is affected by low sperm count, poor motility or general poor sperm quality, it is most effective to take a combination product with multiple fertility-enhancing nutrients. This increases the probability that multiple sperm parameters and therefore the overall Total Motile Spermatozoa (TMS) count is maximised.
TMS is the mathematical product of sperm count, motility and sperm volume and measures how many million top-quality sperm cells are present in an entire ejaculate.
Fertility micronutrients are all affordable, well-tolerated and proven highly complimentary in their effectiveness in improving multiple sperm parameters simultaneously.
Increasing nutrient intake to boost male fertility
With the effects of nutrients on male fertility well established, men wanting to start a family need to pay close attention to their diet.
Although the body can produce some amino acids such as glutathione, arginine and carnitine itself, often there are still dietary requirement to sustain healthy levels.
Although a balanced diet enriched with unprocessed foods can help to sustain the availability of nutrients necessary for healthy fertility, there can be limitations. For example, during periods of illness or prolonged stress, the body’s nutritional demands increase. This can sometimes lead to a reduction in fertility.
In addition, lifestyle factors such as tobacco and alcohol use, insufficient sleep, excessive weight gain, and inactivity may negativity affect fertility.
All male fertility nutrients
Dr. Kooner is Deputy Director of The Advanced Fertility Center of Chicago and has been a Specialist in Fertility Treatment since 1999.
As well as the areas that the clinic specialises in general, he is particularly interested in managing oocyte donation, female same-sex couples, single women having sperm donation and those considering egg freezing.
Dr. Kooner regularly speaks at fertility meetings. He has published in national journals and constantly contributes to the fertility research and publications from Advanced Fertility Center of Chicago.
References
↑1 | Chen J, Wollman Y, Chernichovsky T, Iaina A, Sofer M, Matzkin H. Effect of oral administration of high-dose nitric oxide donor L-arginine in men with organic erectile dysfunction: results of a double-blind, randomized, placebo-controlled study. BJU International. 1999. 83(3): 269-73 |
---|---|
↑2 | Schachter A, Goldman JA, Zukerman Z. Treatment of oligospermia with the amino acid arginine. Journal of Urology. 1973. 110(3): 311-3 |
↑3 | Imhof M, Lackner J, Lipovac M, Chedraui P, Riedl C. Improvement of sperm quality after micronutrient supplementation. e-SPEN Journal. 2012. 7(1): e50-e53 |
↑4 | Naher ZU, Biswas SK, Mollah FH, Ali M, Arslan MI. Role of Glutathione in Male Infertility. Bangladesh Journal of Medical Biochemistry. 2013. 4(2): 20-25 |
↑5 | Lenzi A, Culasso F, Gandini L, Lombardo F, Dondero F. Placebo-controlled, double-blind, cross-over trial of glutathione therapy in male infertility. Human Reproduction. 1993. 8(10): 1657-62 |
↑6 | Eskiocak S, Gozen AS, Yapar SB, Tavas F, Kilic AS, Eskiocak M. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Human Reproduction. 2005. 20(9): 2595-2600 |
↑7 | De Rosa M, Boggia B, Amalfi B, Zarrilli S, Vita A, Colao A, Lombardi G. Correlation between seminal carnitine and functional spermatozoal characteristics in men with semen dysfunction of various origins. Drugs in R&D. 2005. 6(1): 1-9 |
↑8 | Matalliotakis I, Koumantaki Y, Evageliou A, Matalliotakis G, Goumenou A, Koumantakis E. L-carnitine levels in the seminal plasma of fertile and infertile men: correlation with sperm quality. International Journal of Fertility and Women’s Medicine. 2000. 45(3): 236-240 |
↑9 | Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. Fertility and Sterility. 2005. 84(3): 662-71 |
↑10 | Banihani S, Sharma R, Bayachou M, Sabanegh E, Agarwal A. Human sperm DNA oxidation, motility and viability in the presence of L-carnitine during in vitro incubation and centrifugation. Andrologia. 2012. 44 Suppl 1: 505-512 |
↑11 | Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. Journal of Biological Chemistry. 2011. 286(4): 2877-2885 |
↑12 | Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature. Fertility and Sterility. 2010. 93(1): 79-88 |
↑13 | Wallock LM, Tamura T, Mayr CA, Johnston KE, Ames BN, Jacob RA. Low seminal plasma folate concentrations are associated with low sperm density and count in male smokers and nonsmokers. Fertility and Sterility. 2001. 75(2): 252-9 |
↑14 | Young SS, Eskenazi B, Marchetti FM, Block G, Wyrobek AJ. The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Human Reproduction. 2008. 23(5): 1014-22 |
↑15 | Colagar AH, Marzony ET. Ascorbic Acid in Human Seminal Plasma: Determination and Its Relationship to Sperm Quality. Journal of Clinical Biochemistry and Nutrition. 2009. 45(2): 144-149 |
↑16 | Lerchbaum E, Obermayer-Pietsch B. Vitamin D and fertility: a systematic review. European Journal of Endocrinology. 2012. 166(5): 765-778 |
↑17 | Aquila S, Guido C, Perrotta I, Tripepi S, Nastro A, Andò S. Human sperm anatomy: ultrastructural localization of 1alpha,25-dihydroxyvitamin D receptor and its possible role in the human male gamete. Journal of Anatomy. 2008. 213(5): 555-564 |
↑18 | Suleiman SA, Ali ME, Zaki ZM, El-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. Journal of Andrology. 1996. 17(5): 530-537 |
↑19 | Jones R, Mann T. Lipid Peroxidation in Spermatozoa. Proceedings of the Royal Society of London. Series B, Biological Sciences. 1973. 184(1074): 103-107 |
↑20 | Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. Journal of Urology. 2009. 182(1): 237-248 |
↑21 | Mancini A, Balercia G. Coenzyme Q(10) in male infertility: physiopathology and therapy. Biofactors. 2011. 37(5): 374-380 |
↑22 | Talevi R, Barbato V, Fiorentino I, Braun S, Longobardi S, Gualtieri R. Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reproductive Biology and Endocrinology. 2013. 11:81 |
↑23 | Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clinical Nutrition. 2010. 29(1): 100-105 |
↑24 | Safarinejad MR, Safarinejad S. The roles of omega-3 and omega-6 fatty acids in idiopathic male infertility. Asian Journal of Andrology. 2012. 14(4): 514-515 |
↑25 | Roseff SJ. Improvement in sperm quality and function with French maritime pine tree bark extract. Journal of Reproductive Medicine. 2002. 47(10): 821-824 |
↑26 | Nikolova V, Stanislavov R, Vatev I, Nalbanski B, Pŭnevska M. Sperm parameters in male idiopathic infertility after treatment with prelox. Akush Ginekol (Sofiia). 2007. 46(5): 7-12 |
↑27 | Stanislavov R, Nikolova V. Treatment of erectile dysfunction with pycnogenol and L-arginine. Journal of Sex and Marital Therapy. 2003. 29(3): 207-213 |
↑28 | Foresta C, Flohé L, Garolla A, Roveri A, Ursini F, Maiorino M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biology of Reproduction. 2002. 67(3): 967-971 |
↑29 | Abbasi AA, Prasad AS, Rabbani P, DuMouchelle E. Experimental zinc deficiency in man. Effect on testicular function. Journal of Laboratory and Clinical Medicine. 1980. 96(3): 544-550 |
↑30 | Caldamone AA, Freytag MK, Cockett AT. Seminal zinc and male infertility. Urology. 1979. 13(3): 280-281 |
↑31 | Chia SE, Ong CN, Chua LH, Ho LM, Tay SK. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. Journal of Andrology. 2000. 21(1): 53-57 |
↑32 | Tikkiwal M, Ajmera RL, Mathur NK. Effect of zinc administration on seminal zinc and fertility of oligospermic males. Indian Journal of Physiology and Pharmacology. 1987. 31(1): 30-34 |
Hi I need one of your products I try to Buy it on online it’s not working how can get it. Firtil pro m
Hi there,
I have recently went through semen analysis test. The result is:
count: 75mil/ml
motility: 48%
morphology: 3%
looking at the other number how significant is 3%? Is natural conception possible?
Hi Dr,
Good evening.
I have conducted semen analysis test and the result is
Count: 55mil/ml
Motility: 45
Morphology: 11 percent .
Please Dr help me prescribe which treatment to take.
Thanks while waiting I’m grateful for your quick reply.
Hai Dr I need help to get pregnant it’s been 9 years now I’ve been tried
I need this medicine
I need this medicine I can’t pregnant my wife